Exploring Optimal Parameters for Multiple Fault Diagnosis

نویسنده

  • Mark Juric
چکیده

Multiple Fault Diagnosis (MFD) is the process of determining the correct fault or faults that are responsible for a given set of symptoms. MFD problems are generally characterized by problem-spaces containing many local minima and maxima. We show that when using Genetic Algorithms to solve these kinds of problems, best results can be achieved with higher than \normal" mutation rates. Schemata theory is then used to analyze this data and show why this genetic operator would give these results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis in a Yeast Fermentation Bioreactor by Genetic Fuzzy System

In this paper, the fuzzy system has been used for fault detection and diagnosis of a yeast fermentation bioreactor based on measurements corrupted by noise. In one case, parameters of membership functions are selected in a conventional manner. In another case, using certainty factors between normal and faulty conditions the optimal values of these parameters have been obtained through the g...

متن کامل

An Optimal Design Approach for Resistive and Inductive Superconducting Fault Current Limiters via MCDM Techniques

The design process of a superconducting current limiter (SFCL) requires simulation and definition of its electrical, magnetic and thermal properties in form of equivalent circuits and mathematical models. However, any change in SFCL parameters: dimension, resistance, and operating temperature can affect the limiting mode, quench time, and restore time. In this paper, following the simulation of...

متن کامل

Active Fault Diagnosis for Nonlinear Systems with Probabilistic Uncertainties

Stringent requirements on safety and availability of high-performance systems necessitate reliable fault detection and isolation in the event of system failures. This paper investigates active fault diagnosis of nonlinear systems with probabilistic, time-invariant uncertainties of the parameters and initial conditions. A probabilistic model-based approach is presented for the design of auxiliar...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

Using PCA with LVQ, RBF, MLP, SOM and Continuous Wavelet Transform for Fault Diagnosis of Gearboxes

A new method based on principal component analysis (PCA) and artificial neural networks (ANN) is proposed for fault diagnosis of gearboxes. Firstly the six different base wavelets are considered, in which three are from real valued and other three from complex valued. Two wavelet selection criteria Maximum Energy to Shannon Entropy ratio and Maximum Relative Wavelet Energy are used and compared...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993